Select Page


In-vivo imaging in the Deep Brain

In-vivo bioimaging in previously inaccessible brain regions at submicron level, with minimal impact on natural brain functions. Minimally invasive microendoscope.

NeuroDeep® – holographic microendoscopy

The world’s first hair-thin fluorescence microscope.

The NeuroDeep v1.0 laboratory setup applies advanced holographic techniques to resolve microscopic images through a hair-thin objective (⌀100μm). The endoscopic imaging probe can be inserted into living brain tissue to observe processes and structures at submicron level of detail. The NeuroDeep laboratory setup for microendoscopy is ideally suited for in-vivo fluorescence imaging of deep brain regions in a uniquely atraumatic manner and with minimal impact on the brain’s natural activity. The instrument is a powerful tool for neuroscience, biomedical and pharma laboratories.

1 | Maintain Natural Brain Functions

The endoscope probe is 100 microns in diameter, but stable enough to penetrate into deep brain regions.

2 | Observe Deep Structures

Thanks to innovative probe design, the tissue along the fibre insertion path can be imaged with high accuracy.

3 | Precise Navigation

As soon as a structure or process of interest is identified on the screen, it can be examined more closely.

4 | Great Detail

Structures and processes smaller than a micrometre can be resolved. Here, dendritic spines are clearly observable.

Laboratory System

Compact Setup

NeuroDeep v1.0 is a compact microendoscopy system, easily movable within the lab, allowing integration into different research setups to support a variety of study designs.

Co-developed with Users

Created in close collaboration with experts from neuroscience and biomedical research, the compact system is fast, easy to operate and reliable.

Microendoscopy in application

If you want to explore, how holographic microendoscopy can support your research project, don’t hesitate to get in touch. We are happy to provide more detailed technical information, brainstorm and discuss.

Deepen your insights


Crossing new frontiers of bioimaging

Discover what has never been seen – with microendoscopy.

Real-time recording of active neuron structures during insertion of a NeuroDeep probe, visible on the user interface.

  • Study in anaesthetised mouse model (Thy1-GFP line).
  • Depth 5 mm – level of the amygdala
  • Field of view: approx. 100×100 μm

Advantages for Researchers

Minimal tissue damage

The small diameter of the holographic endoscope reduces the negative impact on natural brain functions and shortens the recovery time after surgery.

Subcellular resolution

Structural changes and activity of subcellular structures such as synapses, dendritic spines and axons are visualized in real time.

Deep penetration

In vivo microscopy in the deepest brain regions becomes possible, which is currently only feasible ex vivo in postmortem brain slices.

Connectivity in Action

Continuous imaging on the way into the brain – recordings from a 100µm NeuroDeep objective, inserted into the brain of an anaesthetised mouse model with dynamic refocusing.

Neuroscientific Background

In-vivo imaging through single Fibres

Holographic endoscope technology is an impactful innovation from the field of Neurophotonics. It is based on years of rigorous research conducted at renowned institutes, and was validated for deep-brain imaging in multiple independent laboratories.

Holographic Microendoscopy

In medicine and neuroscience, a large endoscopic probe size can cause considerable limitations and complications, such as bleeding and damages to internal organs. The hair-thin endoscope addresses this issue by utilising the narrowest possible channel able to transfer image information – a single multimode optical fibre. Our approach uses computer-controlled holographic modulators and principles of digital holography. Thanks to this breakthrough innovation, the complex light propagation through the medium of the fibre can be characterised and tailored to deliver advanced microscopy at the end of the minuscule probe.







Advanced Neuroimaging

Central Brains

Neurological diseases often take effect in the deepest brain com­part­ments. Hair-thin endoscopes can be routinely used for in-vivo imaging in brain regions such as the Amygdala and Thalamus.


Real time imaging during the insertion of the fibre probe ensures that the intended location is addressed successfully. This mi­ni­mi­ses the risk of time loss due to wrong placement of the imaging instru­ment.


Use a wide spectrum of dyes to make neural activity visible. Staining methods for calcium imaging and photostimulation can be employed.


Hair-thin endoscopes can achieve images with submicron re­so­lu­ti­on. Microscopic processes such as neuron connectivity, the movement of cell organelles or the blood flow can be observed.

Our Mission

DeepEn provides laboratories with powerful tools to study the deepest regions of the brain. Our mission is to support researchers in discovering, developing and applying the tools for prevention, diagnosis, and treatment of brain disorders.


Science4Life Start-up competition winner

Science4Life Start-up competition winner

DeepEn won in the second stage of the Science4Life Startup Competition! Science4Life events have been catering to deep tech startups with a strong research and development background for over 25 years. These events are known for their high level of quality and...

read more

Meet our Team

10 + 10 =

By clicking on the “Send” button, you submit personal data to us and consent to the processing of your data in accordance with our privacy policy.

DeepEn is funded by the Federal Ministry for Economic Affairs and Climate Action and the European Social Fund as part of the EXIST program.

DeepEn is a research transfer project from Leibniz-Institute of Photonic Technologies


Follow us:
Quick Links

Phone: +49 (0) 3641 206 225